
Master Program in Engineering Physics

Project in applied physics

Machine Learning Approach to Classify
Quantum Correlations in Quantum States

Authors

Abrahamsson, Tim
Dahlberg, Julia

Rudengren, Isabella

Supervisors

Azimi Mousolou, Vahid
Singh, Prashant
Mattsson, Per

Uppsala

January 15, 2024

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

Abstract

Quantum entanglement is an integral part of the field of quantum technology. However, it is still difficult
to detect whether or not a given state is entangled, unless one is dealing with a pure state, which is rare in
experiments. Luckily, there have been many great advances in the field of machine learning recently which
has led to an interest in implementing it when detecting entanglement. This project aims to investigate
some ways this could be implemented through the use of neural networks. The neural networks are firstly
implemented in a standard fashion and later forced to connect to physical concepts. The implementation
of the neural network led to a high accuracy model. However, this model lost a large part of its accuracy
when trying to connect it to the Bell-inequality. Later, the Bloch inequality was implemented to more
generally represent the density matrices of the 2 qubit states used. Through investigation of the regions
of inputs used in this representation that led to entanglement, a clear distinction between entangled and
separable states was found. This paper shows the potential of using machine learning in the classification
of quantum states. However, further research is needed for this to be practically implemented.

1

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

Table of contents

1 Introduction 3

2 Implementation using a shallow neural network 4

2.1 Theory and Method . 4

2.1.1 Data generation . 4

2.1.2 Implementing Machine Learning . 7

2.2 Results . 9

2.3 Discussion . 13

3 Neural network and the Bell-inequality 14

3.1 Theory . 14

3.1.1 Modified Bell-inequality . 14

3.1.2 Machine learning model . 14

3.2 Method . 15

3.3 Result . 16

3.4 Discussion . 17

4 Further investigations using Bloch representation 18

4.1 Theory . 18

4.2 Method . 19

4.3 Results . 19

4.4 Discussion . 23

5 Summary and Conclusions 24

References 25

2

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

1 Introduction

In quantum information theory, the concept of entanglement, which is a property of quantum states, is
of utmost importance since it is what allows quantum computers to act differently from, and solve some
problems more efficiently than classical computers. However, to actually use entanglement in quantum
computers one will need to be able to identify when a pair of quantum bits, or qubits, are entangled. In
general, there are two kinds of quantum states, mixed states and pure states, and it is currently much easier
to identify entanglement in pure states but experiments rarely produce a pure state. In addition to this, for
more complex systems than two- or three-qubit systems, it is very difficult to identify entanglement.[1][2]

As the field of quantum computing has advanced, so has the field of machine learning, which has led to
an interest in how they can be connected. Experiments have been performed investigating how this can
be done and this project further analyzes how neural networks can be useful when classifying quantum
states as entangled or separable. The project can be divided into three different parts. The first part
is an analysis of how well a neural network could classify entangled states given a certain input. The
second part is an attempt to connect this neural network to a physical classification to make sure that
the classifications make physical sense. The final part is an investigation of parameter values in a more
general representation of two-qubit systems to see how they impact the entanglement of the state.[3]

3

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

2 Implementation using a shallow neural network

The first part of the project is based on the article ”Entanglement detection using artificial neural networks”
by Naema Asif et.al [3]. In this article machine learning models defined as neural networks with different
number of nodes are trained and evaluated to be able to classify bipartite (two-qubit) quantum states as
either entangled or separable (disentangled). The results are then compared with entanglement witnesses,
which functions as theoretical expressions for classifying quantum states, to prove the machine learning
improvement.

In this part of the report, shallow neural networks with different number of nodes are created, trained and
evaluated based on the article. The models should be able to classify bipartite quantum states as either
entangled or separable as accurate as possible. Thus, this is binary classification problem. The models
described here are similar to those in the article, however, some slight changes have been done to improve
performance. The results are then compared with results from the previous mentioned article. In this
report there is also a small analysis of comparing two different input features to the trained models, which
is not done in the article.

2.1 Theory and Method

Figure 1 shows the procedure of work in this part of the project. Firstly the data is generated in Matlab
and then transferred to Python where the machine learning (ML) models are defined, trained and eval-
uated. The individual parts of the workflow will be more thoroughly explained further in the article in
chronological order.

Figure 1: Workflow of the process from the generation of data to the analysis of the performance of the
machine learning.

2.1.1 Data generation

Firstly a large data set was generated in Matlab using the same methods as in article [3], i.e through the
usage of the QETLAB package (a Matlab package used for quantum physical calculations). The large data
set consists of seven smaller data sets which were created from different bipartite (two-qubit) quantum
state families to get a diverse set of data points, and hence a more general solution. Each smaller data
set consists of 50,000 data points which were put together to produce one big data set of in total, 350,000
data points. A data set only used for testing consisting of 50,000 data points was also created.

For each data point a density matrix, ρ, was created that represents a bipartite quantum state. From
this state, ρ, measurements were performed to extract features which were used as input to our machine
learning models. The data is also labeled. The method to produce each of the seven smaller data sets is
described below. Description of the generation of these data sets require the use of Dirac notation which
represents quantum states as state vectors in a complex vector space using what is known as kets (|α⟩)

4

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

and their conjugate transpose known as bras (⟨α|) [4]. Later on in the article these state vectors will be
rewritten to their vector form for Matlab calculations. While these state vectors can only represent pure
states, the density matrices are able to represent both pure and mixed states.

Generating density matrices The first data set, containing 50 000 data points, was generated from
the density matrix

ρθ,ϕ = p |ψθ,ϕ⟩ ⟨ψθ,ϕ|+ (1− p)
I

4
. (1)

Here, p is the noise factor given by a random value between 0 and 1, and was obtained in Matlab by using
the function rand, and I is a 2x2 identity matrix. |ψθ,ϕ⟩ is a quantum state represented by

|ψθ,ϕ⟩ = cos

(
θ

2

)
|01⟩+ eiϕsin

(
θ

2

)
|10⟩ (2)

where θ is a random value between 0 and π, and ϕ is a random value between 0 and 2π, both implemented
by using the rand function. Furthermore, |10⟩ and |01⟩ were implemented as their matrix representations
on the form [0 1 0 0]T and [0 0 1 0]T , respectively. The second data set, containing another 50 000 data
points, was also created using the density matrix in Eq(1), however, |ψθ,ϕ⟩ is for this data set given by

|ψθ,ϕ⟩ = cos

(
θ

2

)
|00⟩+ eiϕsin

(
θ

2

)
|11⟩ (3)

where |00⟩ and |11⟩ were implemented as their matrix representations on the form [1 0 0 0]T and [0 0 0 1]T .

The third and fourth data sets exclusively contains entangled and separable quantum states, respectively.
From the QETLAB package, random density matrices were produced by using the RandomDensityMatrix
function. To generate 50,000 entangled states for the third data set, each density matrix was checked in a
while loop using the PPT criterion through the IsPPT function. This criterion was also used for labeling
the data sets and is explained in the paragraph Labeling data. Moreover, to create 50,000 separable states
for the fourth data set, the product of two different random density matrices was calculated, which ensures
non-entanglement for the states by definition.

For the fifth, sixth and seventh data set, each consisting of 50,000 quantum states, the expression in
equation (1) was used again to produce the density matrices for the quantum states. For the fifth data set
the state vector, |ψθ,ϕ⟩, is a pure state acquired from the function RandomStateVector in the QETLAB
package. For the sixth and seventh data sets, the |ψθ,ϕ⟩ is given by the two different Bell states

|ψ+⟩ =
1√
2
(|01⟩+ |10⟩) (4)

|ϕ+⟩ =
1√
2
(|00⟩+ |11⟩), (5)

respectively.

Another bipartite data set consisting of 50,000 data points only used for testing, was also generated from
equation 1. Here |ψ⟩ is the Bell state defined in equation 6 and p is the noise factor defined as p ∈ (0, 1).
A quantum state of this definition is defined as entangled if p > 1

3 and separable if p < 1
3 [3]. When

generating this data set in Matlab, the values of p are evenly spaced values between 0 and 1 (excluding 0,
1 and 1

3).

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) (6)

Feature extraction After the density matrices were created, features was calculated for each density
matrix to be used as an input feature in the machine learning algorithm. Two different features were used
and then compared. The first one, also used in the article by Naema Asif et.al. [3], is the relative entropy

5

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

of coherence of a quantum state. The second one is the eigenvalues to a matrix U created from the density
matrices. More details about these features and how they were extracted will be explained below.

The relative entropy of coherence of a quantum state ρ is a base dependent quantity defined as in equation
7 below. S(ρ) is the von-Neumann entropy of the quantum state ρ defined as S(ρ) = −tr(ρ log ρ) and ρd is
the diagonal state of ρ defined as ρd =

∑
i ⟨i| ρ |i⟩ |i⟩ ⟨i| where |i⟩ is a reference basis. The basis sets used

are the same as in the article and they are defined in equation 8 where ϕ = π. [3] The first set of input
features is therefore: {Cr(QS, ρ), Cr(RS, ρ), Cr(RT, ρ), Cr(QT, ρ)}.

Cr(ρ) = S(ρd)− S(ρ) (7)

Q : {|0⟩ , |1⟩}
R : {|R+⟩ , |R−⟩} =

{
1√
2
(|0⟩+ ieiϕ |1⟩), 1√

2
(|0⟩ − ieiϕ |1⟩)

}
S : {|S+⟩ , |S−⟩} =

{
1√
2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)

}
T : {|0⟩ , |1⟩}

(8)

This feature extraction are based on the Bell-inequality for the relative entropy of coherence, defined in
equation 9. It is an entanglement witness that can classify states as entangled or separable by analyzing
if the inequality is violated or not for quantum states. The inequality is based on a thought experiment
concocted by John Bell, where he creates and inequality which is solely based on the presumption of local
realism, which can be boiled down to the assumption that the results of one measurement is unaffected
by operations on a separate system.[5] In classical physics this equality always holds, but when one also
accounts for quantum mechanics the inequality is, on average, broken. Generally, entangled states violates
the inequality and separable satisfies it, however there exists many exceptions [3]. This Bell-inequality is
therefore used as an comparison to our machine learning model.

Cr(QS, ρAB) + Cr(RS, ρAB) + Cr(RT, ρAB)− Cr(QT, ρAB) ≤ 4 (9)

The second feature is the three eigenvalues to the matrix U defined by equation 11, where Tρ is defined
in equation 10. Here σn and σm represent the Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
,

TT
ρ is the matrix transpose of Tρ and ρ is the density matrices generated in paragraph Generating density

matrices. The second set of input features is therefore: {u1, u2, u3} where ui is an eigenvalue to matrix U .
[1]

Tρ = [tnm] = [Tr(ρσn ⊗ σm)] (10)

U = TT
ρ Tρ (11)

This feature extraction is based on the Bell-CHSH inequality together with the Bloch representation of the
density matrices which can be seen in equation 12. The lower right matrix consisting of the T-elements in
this representation is referred to as the correlation matrix. [6]

ρ =
1

4

(
I ⊗ I + x⃗ · σ⃗ ⊗ I + I ⊗ y⃗ · σ⃗ +

3∑
n,m=1

Tnmσn ⊗ σm

)
(12)

For a two-qubit system, the Bell-CHSH inequality is given by[6]

|Tr(ρ BCHSH)| ≤ 2 (13)

According to the Horodecki theorem the maximum value for the Bell-CHSH operator for a state ρ is given
by

max
BCHSH

Tr(ρ BCHSH) = 2
√
M(ρ) (14)

where M(ρ) = max
j<k

{hj + hk} ≤ 2, and hj are the eigenvalues of the matrix U = TTT . This gives us

the condition that for M(ρ) > 1 the Bell-CHSH inequality is violated and therefore the state is non-local,
which represents action at a distance between states is possible. Since we now have a correlation between
the eigenvalues of the U -matrix and whether the state is local or not, we can use these eigenvalues as input
parameters for the training and evaluation of a machine learning model.

6

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

Labeling data To label the data a criterion called Positive Partial Transpose (PPT) criterion or Peres-
Horodecki criterion was used. This is a criterion that can determine if for example two- or three-qubit
quantum states are entangled or separable by computing the eigenvalues of the partial transpose of the
density matrix of a quantum state, ρ. The state is defined as entangled if any eigenvalues are negative and
separable if all eigenvalues are non-negative [7]. The QETLAB function IsPPT was used to calculate the
positive partial transpose of the density matrices, ρ, in Matlab and the label 1 correspond to an entangled
state and the label 0 corresponds to a separable state.

2.1.2 Implementing Machine Learning

When the data sets had been generated with features and labels, these are saved in a csv-file and transferred
to Python were the machine learning algorithm is implemented. The machine learning algorithm is a neural
network implemented in Python (Google Colab) using the Pytorch package and the Scikit-Learn package.
The models were defined to solve a binary classification problem defined as being able to correctly classify
bipartite quantum states as either entangled or separable.

Basics Neural Network Before explaining the definition of the machine learning model used here, the
basics of the type of neural networks used here will be shortly explained. A neural network is a type of
machine learning model consisting of several layers represented by the rows of circles in figure 2. It has
one input layer (the layer to the left) and one output layer (rightmost layer). It can also have one or
several hidden layers which are between the input and the output layer. Each layer has a number of nodes
and they in turn contains weights and biases which are model parameters updated through the training
process of the neural network. The output, y from a node is given by the equation 15 (also seen in figure
2) where wi represents the weights, bi the biases and xi the input data. f is an activation function defined
by the user.

y = f

(∑
i

wixi + bi

)
(15)

Figure 2: A basic visualization of a neural network with the equation for the output from one node.

A neural network is trained by feeding it the input features of a training data set. The model produces a
predicted output which is then fed into a user-defined loss function which calculate the loss. The loss is
here defined as the difference between the predicted output from the model and the correct output given

7

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

by the labels from the training data set. The loss is then used to calculate gradients which are used to
update the model parameters in the neural network (the weights and biases) using an optimizer function
(also user-defined). The whole process is then repeated a number of times depending on the number of
epochs and batches you have. The number of epochs is defined as the number of times you feed the whole
training data set to the model and when using batches one divides the whole training data set into several
smaller parts which are then fed to the model one at a time. Using batches increases the number of times
the model parameters are updated every epoch. After the training process the model is evaluated and
tested.[8]

Machine Learning Models Three different neural network models were implemented in accordance
with article [3]: a simple neural network with no hidden layer (0 nodes) and two models with a hidden
layer with 10 nodes and 50 nodes respectively. A visualization of these models can be seen in figure 3
where the simplest model is visualized by figure 3a and the other to models by figure 3b.

(a) 0 nodes (b) 10 or 50 nodes

Figure 3: A visualization of the neural networks used.

All models have an input layer and an output layer. The input layers of all models have a number of nodes
corresponding to the size of each type of input feature. When using the data set with the relative entropy
of coherence as input feature, the input layer has four nodes, and when using the eigenvalues to the matrix
U as input feature, the input layer has 3 nodes. The output layer has one node which corresponds to the
model’s class prediction (entangled or separable).

The models also have one or several activation functions. The simplest model (0 nodes) have an sigmoid
activation function. For the other two models, which contains a hidden layer, two linear activation function
were used: first a rectified linear activation function (ReLU) and then a sigmoid activation function. Using
ReLU introduces a desired non-linearity in our model which makes the model able to learn more complex
correlations. To implement these activation functions in our neural networks, the functions nn.Sigmoid
and nn.ReLU from Pytorch were used.

For the two models with 10 and 50 nodes the weights and biases in the neural network are also initialized
in accordance with article [3]. The weights are initialized uniformly (also called He initialization) using
the function nn.init.kaiming_uniform_ from the Scikit-Learn package and the all biases are set to
0.01.

Algorithm In the following part the algorithm for the implementation of the machine learning models is
described in accordance with the workflow in figure 1. Firstly, the data generated in Matlab was read from
the csv-file. The large data set was then split into a training set, validation set and test set of 70% (245,000
data points), 20% (70,000 data points) and 10% (35,000 data points) of the total data points respectively.

8

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

The randomized split was done using Scikit-learn’s function train_test_split twice. To improve the
accuracy results, the input data was then normalized using Scikit-learn’s function MinMaxScaler (it was
not clear whether this was done in article [3]).

In the next part, the training process, the different models were trained using some different training
parameters which were tuned over a few runs for each model. These can be seen in table 1 but they are
also explained below.

Model Learning rate Batch size Early stopping start Early stopping limit

0 nodes 0.01 Training size 100 30
10 nodes 0.001 32 100 50
50 nodes 0.001 32 None None

Table 1: Parameter specifications for final ML models.

The loss function used during training (and evaluation) was binary cross-entropy (BCE), and Root Mean
Squared Propagation (RMSProp) was used as an optimizer. They were implemented using the built-
in functions BCELoss() and RMSprop() with default parameters except for the learning rate in the
optimizer which was varied according to the table.

In the training process an upper limit of 250 epochs (learning iterations) was set and batches of different
sizes were used which can be seen in table 1. When training the models with 10 nodes and 50 nodes
the training most often used all epochs, while for the simplest model with 0 nodes the training lasted for
approximately 100 epochs. Early stopping and checkpointing was also implemented. Early stopping stops
the training process if the model has not become more accurate for a user set limit of epochs and makes
sure the model does not train for too long and become overfitted. Checkpointning saves the model with
the highest performance (highest accuracy) so the best model can be used for the evaluation phase. To
avoid overfitting our models, the loss and accuracy on the training data as well as the accuracies evaluated
on the training and validation data respectively were plotted.

In the evaluation process, following the training process, the trained models are evaluated on the test
data from the large data set and the test data set created in paragraph Generating density matrices from
equation 1 and 6. The test data sets are from now on called test data set 1 and test data set 2. Accuracies
as well as the number of truly/falsely entangled/separable states are calculated on both test data sets.
The results can be seen in section 2.2.

This whole process described above is executed for each type of neural network for the data set containing
the relative entropy of coherence values and for the data set containing the eigenvalues to the matrix U ,
one at a time. The models trained on the data set containing the relative entropy of coherence values are
from now on called Model_Cr and the models trained on the data set containing the eigenvalues to the
matrix U are called Model_ueig. The process is also repeated three times for each model with different
values on the seed which controls the random number generator in the train_test_split. This makes
it possible to vary the data points in the training data set and the validation data set. The test data set
is, however, always the same. In total there are 18 different neural network models.

2.2 Results

In this section the performance of the different machine learning models will be presented using terms
such as accuracy, truly entangled (TE), truly separable (TS), falsely entangled (FE) and falsely separable
(FS). Accuracy stands proportion of states that were correctly predicted. TE/TS are the number of states
correctly predicted as entangled/separable and FE/FS are the number of states wrongly predicted as
entangled/separable.

Firstly the generated data sets are classified using the Bell-type inequality for relative entropy of coherence

9

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

and the Bell-CHSH inequality in equation 9 and 13 respectively. Using the Bell-type inequality for relative
entropy of coherence on our corresponding data set consisting of values of relative entropy of coherence,
we get an accuracy of 44.6% and the model solely predicts the states as separable. This indicates that
the inequality is not able to detect any entangled states in our data set. Using the Bell-CHSH inequality
as an entanglement witness on the data set consisting of eigenvalues to the matrix U gives an accuracy of
59.94% and it manages to correctly predict 53756 out of 193976 entangled states.

The accuracy results from evaluating the machine learning models on the test data set 1 (test data set
received from the train-validation-test split) can be seen in table 2 where table 2a and 2b present the
results for the models trained on the values of relative entropy of coherence (Model_Cr) and eigenvalues
of the matrix U (Model_ueig), respectively. The corresponding number of truly entangled TE, FE, TS
and FS states for each set of models can be seen in figure 4 where figures 4a, 4c and 4e show the results
for the Model_Cr and figures 4b, 4d and 4f show the results for the Model_ueig.

The results from evaluating the model on the test data set 2 defined in equation 1 and 6 is seen in table
3a with a corresponding graph indicating the relationship between the predicted probability and the noise
factor p in figures 5 and 6. As in the previous mentioned tables and figures table 3a and figures 5a,
5b and 5c are results from the Models_Cr and table 3b and figures 6a, 6b and 6c are results from the
Models_ueig.

Table 2: Accuracy values for models evaluated on test data set 1.

(a) Models trained on coherence.

Model set\Nodes 0 10 50

Model1_Cr 81.39% 96.91% 97.58%
Model2_Cr 81.46% 96.39% 96.59%
Model3_Cr 81.74% 97.03% 96.91%

Mean 81.53% 96.78% 97.03%
std 0.19% 0.34% 0.51%

(b) Models trained on eigenvalues to the matrix U .

Model\Nodes 0 10 50

Model1_ueig 88.22% 97.72% 98.95%
Model2_ueig 91.92% 98.11% 99.39%
Model3_ueig 91.84% 98.51% 99.26%

Mean 90.66% 98.11% 99.20%
std 2.11% 0.40% 0.23%

Table 3: Accuracy values for models evaluated on the test data set 2.

(a) Models trained on coherence.

Model set\Nodes 0 10 50

Model1_Cr 99.222% 99.734% 99.994%
Model2_Cr 98.208% 99.952% 99.980%
Model3_Cr 98.784% 99.936% 99.992%

Mean 98.738% 99.874% 99.989%
std 0.509% 0.122% 0.008%

(b) Models trained on eigenvalues to the matrix U .

Model\Nodes 0 10 50

Model1_ueig 99.828% 99.790% 99.750%
Model2_ueig 99.794% 99.806% 99.802%
Model3_ueig 99.990% 99.996% 99.918%

Mean 99.871% 99.864% 99.823%
std 0.105% 0.115% 0.086%

10

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

(a) Model1_Cr (b) Model1_ueig

(c) Model2_Cr (d) Model2_ueig

(e) Model3_Cr (f) Model3_ueig

Figure 4: Number of truly entangled (TE), falsely entangled (FE), truly separable (TS) and falsely
separable (FS) states for different number of nodes for trained models.

11

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

(a) Model1_Cr (b) Model2_Cr (c) Model3_Cr

(d) Model1_Cr Zoomed (e) Model2_Cr Zoomed (f) Model3_Cr Zoomed

Figure 5: Predicted probability that a quantum state is predicted as entangled or separable as a function
of the noise factor p for different nodes for models trained on relative entropy of coherence. The

horizontal line indicates where the predicted probability is 0.5 and the vertical line marks where p = 1
3 .

The subfigures in the lower row pictures the area close to the vertical line.

(a) Model1_ueig (b) Model2_ueig (c) Model3_ueig

(d) Model1_ueig Zoomed (e) Model2_ueig Zoomed (f) Model3_ueig Zoomed

Figure 6: Predicted probability that a quantum state is predicted as entangled or separable as a function
of the noise factor p for different nodes for models trained on eigenvalues to the matrix U . The

horizontal line indicates where the predicted probability is 0.5 and the vertical line marks where p = 1
3 .

The subfigures in the lower row pictures the area close to the vertical line.

12

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

2.3 Discussion

The machine learning models trained on values of relative entropy of coherence have an average accuracy of
81.53% (0.19%) for the simplest model (0 nodes) and 97.03% (0.51%) for the ML model with 50 nodes for
an evaluation on data set 1 (table 2a). Compared to the corresponding accuracies presented in article [3]
(78.18% and 94.62%) a higher accuracy was achieved for the ML models implemented in this project. The
increased accuracy could be due to the differences in our machine learning models which mainly consist
of the increased number of epochs (250 instead of 100) and the implementing of batches which results in
more and longer training of our models. It is unclear what preparations are done to the data sets in article
[3], however normalization might have an involvement in the increased accuracy as well.

From the figures of the truly/falsely entangled/separable states in figure 4 one can note that the models
with 0 nodes have the highest values of truly entangled state, but also falsely entangled states. The models
with 10 and 50 nodes are therefore more preferable since the number of falsely entangled states are much
smaller.

When comparing the results from the Model_Cr and the results from the Model_ueig in table 2 one
notices that the average accuracies are higher for the Model_ueig. For these models the number of truly
predicted states increases with increasing number of nodes and the number of falsely predicted states
decreases (see figure 4), whereas for the Model_Cr this pattern is not visible. Therefore the Model_ueig
seems to perform better on the test data set 1.

However, if looking at the average accuracies for evaluation on the test data set 2 in table 3, the Model_Cr
with 50 nodes performs best out of all models with an average accuracy of 99.989% (0.008%). For the
Model_ueig the model with 0 nodes performs best, so the accuracy is decreasing with increasing number of
nodes, which seems contradictory. However, worth noting, the accuracies are all above 98% for all models,
so all models performs very well on the test data set 2. This result is notable in figure 5 and 6 as well
since an increasing number of nodes mostly results in an steeper gradient at the horizontal line p = 1

3 and
that the lines go through the cross-point between the horizontal and the vertical line.

Note that the ML models with 50 nodes have no early stopping since the accuracy slowly increases for
all epochs, and would probably reach an even higher accuracy with a higher number of epochs. However,
due to time limits the number of epochs are limited to 250 since this results in a training time of 35-40
minutes. Higher accuracies could perhaps also bed reached by tuning the parameters for the training of
models, to generate more accurate models.

13

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

3 Neural network and the Bell-inequality

The previous part of this report showed that a shallow neural network can classify quantum states with
accuracies in some cases reaching up to 99%. However, it is difficult to make a quantum physical inter-
pretation from the machine learning model, which could be a desirable feature. Therefore, in this part of
the project an attempt to implement a modified version of the Bell-inequality in the neural network will
be presented and analyzed.

3.1 Theory

3.1.1 Modified Bell-inequality

From the Bell-inequality for the relative entropy of coherence formulated in equation 9 the inequality is
reformulated by adding independent probabilities PAB to each term where PAB ∈ [0, 1] and AB is the
basis. Since

PQSCr(QS, ρAB) + PRSCr(RS, ρAB) + PRTCr(RT, ρAB − PQTCr(QT, ρAB) ≤ (PQS + PRS + PRT + PQT) · 4 = 4

the Bell-inequality can be written as in equation 16, where the bases Q, R, S and T are defined in equation
8.

PQSCr(QS, ρAB) + PRSCr(RS, ρAB) + PRTCr(RT, ρAB)− PQTCr(QT, ρAB) ≤ 4 (16)

The goal is to determine the probabilities {PAB} so that the inequality in equation 16 can classify quantum
states as accurate as possible. However, since the model will output a set of values of {PAB}, it is of interest
to analyze if the individual parameter values tend to converge or not. Also for simplicity the probabilities
{PAB} are from now on redefined as P1 = PQS , P2 = PRS , P3 = PRT and P4 = PQT , so equation 16 can
be rewritten as:

P1Cr(QS, ρAB) + P2Cr(RS, ρAB) + P3Cr(RT, ρAB)− P4Cr(QT, ρAB) ≤ 4 (17)

Since our input data set take values in the range (1 · 10−14, 1.4), PAB ∈ [0, 1] and that the original Bell-
inequality was unable to detect any entangled states in our data set (see section 2.2), an additional term
might be needed for the entangled states to disobey the inequality. Therefore, there is also an attempt
adding an extra term, P0 to the inequality resulting in equation 18.

P0 + P1Cr(QS, ρAB) + P2Cr(RS, ρAB) + P3Cr(RT, ρAB)− P4Cr(QT, ρAB) ≤ 4 (18)

3.1.2 Machine learning model

Two different kind of models are defined, trained and tested here representing two different strategies.
The first machine learning model is here defined as a neural network with one input layer, one hidden
layer and one output layer, in total 3 layers. The input layer consists of four nodes, representing the four
input features, the hidden layer has ten nodes and the output layer has four nodes, representing the four
probabilities PQS , PRS , PRT and PQT . The model is trained on the data set based on relative entropy of
coherence described in section 2.1.1 and has two activation functions: ReLU and Sigmoid. A visualization
of the model can be seen in figure 8a.

It is in the loss function where the modified Bell-inequality is defined and used, which can be seen in figure
7. The loss function takes the four output values from the neural network and inserts them in equation
16 as the set of probabilities. The expression on the left side of the inequality is then evaluated using the
output models from the neural network and the corresponding Cr-values. The resulting sum is then fed
into the in-built Python function torch.nn.functional.binary_cross_entropy_with_logits
together with the labels of our data set. This function firstly evaluates the sum using a sigmoid function

14

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

and then use binary cross-entropy to calculate the loss. The resulting loss is then used when performing
the back-propagation of the machine learning model. As in the previous section RMSProp is defined as
the optimizer of the ML model.

Figure 7: A visualization of the loss function used for the 3 layer model.

The second model is an extension of the firstly described model. It consist of one extra layer containing
one node, placed after the previous output layer resulting in a total of 4 layers. A visualization of the
model can be seen in figure 8b. This model is trained on the same data set as the first model. This model
has one ReLU and two Sigmoid activation functions and uses BCE as a loss function. The probabilities
are here extracted as the outputs from the nodes in the third layer.

(a) 3 layer model (b) 4 layer model

Figure 8: A visualization of the two neural networks used when implementing the Bell-inequality into
ML models.

To implement the Bell-inequality with an extra term (equation 18) into the machine learning models, the
number of nodes in the output layer of the 3 layer model and the third layer in the 4 layer model, are
changed to five (instead of four). For the inequality in the loss function and for the evaluation, equation
18 is used (instead of equation 16).

3.2 Method

The two neural network models, with and without P0, are trained on the data set containing the relative
entropy of coherence features using approximately the same procedure as described in section 2.1.2. How-
ever, here the training was executed for 50 epochs, used batches with a batch size of 32 and the optimizer
had a learning rate of 0.001. An evaluation was performed at the end of every epoch where the loss and
the accuracy on the training data set, and the accuracy on the validation data set were calculated using
accuracy metrics. The number of truly and falsely entangled states were also noted. Note that the input
data to the model was not normalized in this part of the project.

15

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

3.3 Result

The results presented below are from an evaluation done on the fully trained models of 50 epochs. The
accuracy results and the number of states identified as TE, TS, FE and FS for evaluation on the training
data set, validation data set and test data set 1, can be seen in table 4. For comparison the accuracy
results received when evaluating the different data sets on the ”original” Bell-inequality in equation 9, are
also included in the table. The distribution of probability values received from the 3 layer model with and
without the extra term P0 can be seen in figure 9 and 10 respectively. This distribution was not done for
the 4 layer model since the model didn’t detect any states as TE.

Table 4: Accuracy results and number of TE, FE, TS and FS predicted by the Bell-inequality (eq. 9)
and the neural network implemented with the modified Bell-inequality and with/without extra term P0.

Data set Model Accuracy TE FE TS FS

Train

Inequality 44.577% 0 0 109213 135787
3 layer With P0 49.272% 11503 0 109213 124284

3 layer Without P0 44.878% 737 0 109213 135050
4 layer With P0 44.577% 0 0 109213 135787

4 layer Without P0 44.577% 0 0 109213 135787

Validation

Inequality 44.454% 0 0 31118 38882
3 layer With P0 49.196% 3319 0 31118 35563

3 layer Without P0 44.771% 222 0 31118 38660
4 layer With P0 44.454% 0 0 31118 38882

4 layer Without P0 44.454% 0 0 31118 38882

Test

Inequality 44.837% 0 0 15693 19307
3 layer With P0 49.317% 1568 0 15693 17739

3 layer Without P0 45.154% 111 0 15693 19196
4 layer With P0 44.837% 0 0 15693 19307

4 layer Without P0 44.837% 0 0 15693 19307

(a) P0 (b) P1 (c) P2

(d) P3 (e) P4

Figure 9: Distribution of individual probability values Pi for neural network with extra term P0.

16

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

(a) P1 (b) P2

(c) P3 (d) P4

Figure 10: Distribution of individual probability values Pi for neural network without extra term P0.

3.4 Discussion

From table 4 it is possible to note that both of the ML models are inaccurate. However, the 3 layer model
performs better than the 4 layer model since this kind of model manage to detect some entangled states
when the other model doesn’t. The ”original” Bell-inequality doesn’t manage to detect any. Also, the
model with the extra term seem to perform slightly better than the model without the extra term for the
3 layer model.

The poor performance of the 4 layer model might be due to that the model doesn’t update the model
parameters in the neural network based on the performance of the evaluation of the inequality. The
update is based on the output from the model i.e. the class prediction. The 3 layer model do update
model parameters based on the modified Bell-inequality, however, by comparing the LHS of the inequality
to the class label, which don’t make sense. This might explain why it manages to detect some entangled
states and why it is just a small amount.

Regarding the values of the probabilities {P1, P2, P3, P4} it is notable from figure 9 and 10 that the
individual probabilities don’t converge to a single value. Instead they mostly take values either close to
zero or one. One probability, P4, differs from the others since the proportion of values close to zero is
much larger than for the other probabilities. This could indicate that the P4 is less relevant than the other
probabilities, however, it is difficult to draw any certain conclusions since the models are inaccurate.

To be able to draw any certain conclusions regarding the usefulness of the modified Bell-inequality, the
performance of the models need to be improved by either improving the models presented here or by
changing strategy completely. Increased training time could perhaps improve these models performances
somewhat, however, the training will be very time consuming and will probably not reach the level of
accuracy needed to make any relevant conclusions. An alternative approach would be to formulate a

17

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

neural network such that the four or five individual probabilities are tuned for the whole training data set
rather than receiving a set of four or five probabilities for each set of data points the model are trained
on. The difficulty is that the sum of the LHS expression in the modified Bell-inequality is unknown, so we
don’t have any data to train on for the Bell-inequality.

4 Further investigations using Bloch representation

The earlier parts of the project focused on how the different features that can be extracted from a density
matrix are related to the entanglement of the state. This part will instead focus on finding the region of
density matrices which represent entangled states through the use of a Monte Carlo method. In addition
to this, we will use a more general representation of the quantum state in the Bloch representation.

4.1 Theory

A Monte Carlo method is a method that is based on repeated random generation.[9] Here, it is used to
describe when a large number of density matrices on the from described below are generate to see which
regions that represent entanglement.

The Bloch representation of a general two-qubit system is given by

ρ =
1

4

(
I ⊗ I + x⃗ · σ⃗ ⊗ I + I ⊗ y⃗ · σ⃗ +

3∑
n,m=1

Tnmσn ⊗ σm

)

and can be rewritten as

ρ̃ =
1

4

(
I ⊗ I + a⃗ · σ⃗ ⊗ I + I ⊗ b⃗ · σ⃗ +

∑
i

ciσi ⊗ σi

)
, (19)

where a⃗ and b⃗ are three dimensional vectors and ci are the elements of a third three dimensional vector.
If a⃗ and b⃗ are set to 0⃗, the equation can be reduced to

ρ̃ =
1

4

(
I ⊗ I +

∑
i

ciσi ⊗ σi

)
, (20)

and written as a matrix representation on the form [10]

ρ̃ =
1

4

1 + c3 0 0 c1 − c2

0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

 . (21)

Here, c1, c2 and c3 are constants with the conditions

18

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

|ci| ≤ 1 ∀ i∑
i

ci ≤ 1

c1 − c2 − c3 ≤ 1, c2 − c1 − c3 ≤ 1, c3 − c1 − c2 ≤ 1.

(22)

In the earlier parts of the report, the labeling was done through the PPT criterion. This part however,
will use a different measure of entanglement called concurrence. The state is referred to as maximally
entangled when the concurrence is equal to one. The concurrence C of a state ρ is given by

C(ρ) = max[0, 2λmax(ρ̂)− trρ̂] (23)

where λmax(ρ̂) is given by the eigenvalues of the matrix

ρ̂ =
√√

ρρ̃
√
ρ, ρ̃ = (σ2 ⊗ σ2)ρ̄(σ2 ⊗ σ2) (24)

and ρ̄ is given by the complex conjugate of ρ.[11]

When using the full version of the Bloch representation the input vectors a⃗, b⃗ and c⃗ follow the constraints

(a21 + a22 + a23) + (b21 + b22 + b23) + (c21 + c22 + c23) ≤ 3. (25)

4.2 Method

Two data sets, one consisting of 50,000 bipartite quantum states and the other of 350,000 bipartite quantum
states, were created in MATLAB based on the density matrix shown in Eq(21), where c1, c2, and c3 are
random values constrained by Eq(22). From this density matrix, the 3-by-3 matrix U was calculated (see
section 2.1.1), and the eigenvalues of this matrix extracted and used as an input feature for the machine
learning algorithm. As an output feature, the concurrence of the density matrix was calculated and used
as a label to determine whether the state was entangled or separable.

The data set comprising 50,000 data points was used as a training set together with the seven data sets
using the eigenvalues to the U-matrix as input features described in section 2.1.1 (Data Set X) on the
models with 0, 10 and 50 nodes, while the data set with 350,000 quantum states (Data Set Y) was trained
separately and exclusively on the models. All the trained models were then evaluated by using 350,000
data points generated from Eq(21) using a different random seed to obtain the models accuracy and plot
c1, c2, and c3 against each other to see which regions were entangled. Out of curiosity this evaluation data
set was also used on our 50 node Model_ueig from section 2 for comparison.

Following this, a data set of random vectors forming positive matrices ρ̃ on the form in equation 19 with
the constraints in 25 was generated. The non-positive matrices where sorted out and the concurrence of
the positive matrices was used to determine their entanglement. Each vector was then plotted with a color
representation of whether they were part of an entangled state or not to investigate if any of the vectors
were more important to the level of entanglement than the others.

4.3 Results

Table (5) shows the accuracy for each model of 0, 10, and 50 nodes, as well as for the data sets the models
have been trained on. The models using Data Set Y as training set, have an overall higher accuracy than
the respective models using Data Set X, where the highest accuracy reaches 99.625%. For both the training
sets, the highest accuracy is obtained for the models using 50 nodes. In figure (11) and (12), scatter plots
for the models using 50 nodes are presented to show the relationship between c1, c2 and c3, and the regions

19

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

for which the quantum states are entangled (red color) or separable (blue color). The figures show that
the region of the entangled states, as well as the region of separable states, forms a clear pattern where the
entangled states surrounds the non-entangled states. When comparing the two-dimensional plots between
the figures, one can see that the edges of the separable states-region are slightly more diffuse for the model
using the Data Set X training set (Figure 11). The highest concurrence found was in the 50 node model
trained on dataset Y, where a concurrence of 0.9970 was located close to one of the corners of the pyramid
shape.

Training Set Model Learning Rate Accuracy

0 nodes 0.01 83.282%
Data Set X 10 nodes 0.001 96.420%

50 nodes 0.001 96.557%

0 nodes 0.01 90.296%
Data Set Y 10 nodes 0.01 99.564%

50 nodes 0.001 99.625%

Table 5: Models trained on the quantum states generated from Eq (21), and their respective accuracy.

(a) The plot illustrates the
relationship between c1, c2

and c3.

(b) The plot illustrates the
relationship between c1 and

c2.

(c) The plot illustrates the
relationship between c1 and

c3.

(d) The plot illustrates the
relationship between c2 and

c3.

Figure 11: Scatter plots of entangled states (red) and separable states (blue). The model uses 50 nodes
and is trained on Data Set X.

20

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

(a) The plot illustrates the
relationship between c1, c2

and c3.

(b) The plot illustrates the
relationship between c1 and

c2.

(c) The plot illustrates the
relationship between c1 and

c3.

(d) The plot illustrates the
relationship between c2 and

c3.

Figure 12: Scatter plots of entangled states (red) and separable states (blue). The model uses 50 nodes
and is trained on Data Set Y.

The accuracy values and number of TE, FE, TS and FS for the 50 nodes models trained on the large
training data set based on the eigenvalues to the matrix U from section 2, can be seen in table 6. The
corresponding scatter plots for Model1_ueig are seen in figure 13. The average accuracy for these models
are 86.763% which is a lower accuracy compared to the previously mentioned models in this part. This
result is also visible in the scatter plots since the blue area (the states classified as separable) takes another
shape compared to the scatter plots from more accurate models in figures 11 and 12.

For comparison the scatter plots based on the data set used for testing in this part, are seen in figure 14.
These plots demonstrates the shape the scatter plots should have if the models manages to predict with
an accuracy of 100%.

Model Accuracy TE FE TS FS

Model1_ueig 86.674% 240982 44554 62376 2088
Model2_ueig 86.251% 242301 47354 59576 769
Model3_ueig 87.364% 242361 43517 63413 709

Average 86.763% 241881 45142 61788 1189
std 0.562% 779 1985 1985 779

Table 6: Accuracy and number of TE, FE, TS and FS for 50 node models from section 2.

21

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

(a) The plot illustrates the
relationship between c1, c2

and c3.

(b) The plot illustrates the
relationship between c1 and

c2.

(c) The plot illustrates the
relationship between c1 and

c3.

(d) The plot illustrates the
relationship between c2 and

c3.

Figure 13: Scatter plots of entangled states (red) and separable states (blue). The model uses 50 nodes
and is Model1_ueig from section 2.

(a) The plot illustrates the
relationship between c1, c2

and c3.

(b) The plot illustrates the
relationship between c1 and

c2.

(c) The plot illustrates the
relationship between c1 and

c3.

(d) The plot illustrates the
relationship between c2 and

c3.

Figure 14: Scatter plots of entangled states (red) and separable states (blue) from the testing data set.

22

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

When plotting the randomly generated vectors it was hard to see a correlation between entanglement and
the vectors a⃗ and b⃗ as seen in figure 15a and 15b. With c⃗ there is a more clear correlation and the figure
also has a semblance with the results seen in 11a and 12a as seen in figure 15c. However, the highest
concurrence found is 0.7907 which is lower than when only using c⃗.

(a) a1 vs a2 vs a3 (b) b1 vs b2 vs b3 (c) c1 vs c2 vs c3

Figure 15: Red dots represent entangled states, blue dots represent separable states

4.4 Discussion

When comparing the results between the different training sets in Table (5), it is clear that when Data Set
Y is used to train on the models, much higher accuracy can be achieved. This indicates that the method
of using only the eigenvalues from the U matrix calculated from Eq (21) as input features is superior to
the method when the seven data sets described in section (2.1.1) are mixed in. However, this might be
because Data Set Y is more uniform compared to Data Set X, and does not give as much of a general
solution as when using Data Set X as the training set. The old models, trained only on the large data
set, are the most inaccurate models which could be due to that they are not trained on any data point
corresponding to the data set generated from the Bloch representation in equation 20. This result can
also be seen in the scatter plots. The scatter plots of the most accurate model are the most similar to the
scatter plots corresponding to the testing data in figure 14, whereas the least accurate model differs the
most from these plots. The highest level of entanglement was found to be located at the corners of the
pyramid shape.

From Figure 11 and 12, it is evident that when the vectors a⃗ and b⃗ are set to 0⃗, the model can still classify
entangled states. Using the Monte Carlo approach, it was found that even if a⃗ and b⃗ do not seem to
contribute to whether the state is entangled or not, they may affect the level of entanglement negatively.

23

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

5 Summary and Conclusions

This report has investigated and tested some of the uses machine learning has in the field of quantum
technology. In the first part of the project the neural network was allowed to determine how to classify
the input features on its own. This lead to a high accuracy when determining which states were entangled,
something that the basic inequality was unable to do despite having the same inputs. This hints at there
being some further correlation between relative entropy of coherence and entanglement beyond just the
inequality as written.

This was investigated further in the second part where probability coefficients were added to the inequality.
A high accuracy was not obtained, even though some hints were found suggesting that an inequality with
different weighted values may be better at detecting entanglement than the basic inequality. This was
both seen in that one of the parameters had a higher probability of being zero than the others and that
using the probability coefficients lead to a slightly higher accuracy.

Finally, a Monte Carlo approach was applied to look at which regions of the vectors in the rewritten Bloch
representation of the density matrices lead to entanglement. Here it was found that there was a separation
between the regions that produce entangled states and the regions that don’t. This, however, was only
true for one of the three vectors while the other two seemed to only contribute to the level of entanglement.

In conclusion, this project has found that a machine learning model can be used to find entangled states
with a high accuracy. However, making a model applicable in physics while still keeping its accuracy is
harder. Making a machine learning model that both can detect entanglement with a high accuracy that
is also more connected to physics may also require an entirely different approach.

24

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

References

[1] R. Horodecki, P. Horodecki, and M. Horodecki. “Violating Bell inequality by mixed spin-1/2 states:
necessary and sufficient condition”. In: Physics Letter. A 200.5 (1995), pp. 340–344.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum information. 10th
Anniversary edition. Cambridge University Press, 2010. isbn: 9781107002173.

[3] Naema Asif et al. “Entanglement detection using artificial neural networks”. In: Scientific reports
13.1.1562 (2023).

[4] J.J Sakurai and Jim Napolitano. Modern Quantum Mechanics. 3rd ed. Cambridge University Press,
2021. isbn: 9781108473224.

[5] John S. Bell. “On the Eistein Podolsky Rosen Paradox”. In: Physics, Vol. 1, No. 3. (1964).

[6] Bohdan Horst, Karol Bartkiewicz, and Adam Miranowicz. “Two-qubit mixed states more entangled
than pure states: Comparison of the relative entropy of entanglement for a given nonlocality”. In:
Physical Review A 87 (2013).

[7] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. “Separability of mixed states: necessary
and sufficient conditions”. eng. In: Physics letters. A 223.1 (1996), pp. 1–8. issn: 0375-9601.

[8] Kiprono Elijah Koech. The Basics of Neural Networks (Neural Network Series) — Part 1. 2022.
url: https://towardsdatascience.com/the-basics-of-neural-networks-neural-
network-series-part-1-4419e343b2b (visited on 01/13/2024).

[9] Steven C. Chapra. Applied numerical methods with MATLAB for engineers and scientists. McGraw-
Hill Higher Education, 2012.

[10] Shunlong Luo. “Quantum discord for two-qubit systems”. eng. In: Physical Review A 77 (2008).

[11] Łukasz Derkacz and Lech Jakóbczyk. “Clauser-Horne-Shimony-Holt violation and the entropy-concurrence
plane”. In: Physical Review A (2005).

25

https://towardsdatascience.com/the-basics-of-neural-networks-neural-network-series-part-1-4419e343b2b
https://towardsdatascience.com/the-basics-of-neural-networks-neural-network-series-part-1-4419e343b2b

Machine Learning Approach to Classify Quantum Correlations in Quantum States 2024

Contributions

An overview of our individual contributions to this project will be described here. A more detailed
description can be found in our status reports. The contributions are divided into the parts of the project
report for simplicity. Note that we all have contributed with ideas and solutions to problems in most of
the parts.

First part

In the first part, Julia did the data generation part except for a few Matlab functions which Tim wrote.
Tim and Isabella worked with and implemented the neural network. We all did runs of the code and
similar to receive results, test ideas/strategies and for analyzes.

Second part

In the second part, Isabella did most of the implementation of the machine learning model with contribu-
tions from Tim. We all discussed the results and what improvements could be done.

Third part

In the third part, Julia did analyze when looking at only the c-values and Tim the part analyzing all
parameters; a, b and c.

Report

In the report, the introduction, abstract and the summary and conclusion were mainly written by Tim.
In the first part, ”Implementation using a shallow neural network”, Julia and Isabella made the largest
contributions and in the second part, ”Neural network and the Bell-inequality” were mainly written by
Isabella. In the third part, ”Further investigations using Bloch representation”, Julia and Tim made the
largest contributions. Tim has also made the figures visualizing the different neural networks presented
throughout the report.

26

	Introduction
	Implementation using a shallow neural network
	Theory and Method
	Data generation
	Implementing Machine Learning

	Results
	Discussion

	Neural network and the Bell-inequality
	Theory
	Modified Bell-inequality
	Machine learning model

	Method
	Result
	Discussion

	Further investigations using Bloch representation
	Theory
	Method
	Results
	Discussion

	Summary and Conclusions
	References

